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Large Biological Bodies by an Iterative
Moment Method with a
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Abstract —The computation of EM fields in a large, three-dimensional
arbitrarily shaped dielectric or biological body is made practical by a
conjugate gradient algorithm with a restart technigue. This algorithm
allows the operator to run the program for large bodies in a measured and
controlled manner. It is clarified that in achieving convergence, a good
initial guess plays only a very minor role while the g and 4 functions
are crucial to the convergence in the conjugate gradient algorithm and
must be included in the restart.

I. INTRODUCTION

HE INTERACTION of microwaves with a biological

body can have beneficial effects, such as the hyper-
thermia treatment of a cancerous tumor, and hazardous
effects, leading to ailments such as cataracts. In both
situations it is essential to know the field intensity inside
the biological body under consideration. This is especially
important at frequencies in the resonance region, where
the field intensity can be rapidly varying and difficult to
predict, appearing sometimes as dangerous “hot spots.”

Computation of electromagnetic (EM) fields in an arbi-
trarily shaped dielectric or biological body has been car-
ried out by both direct and iterative methods of moments
(MM). In a direct MM, an operation involving a matrix
poses a heavy demand on the computer central memory.
As a result, the direct MM is limited to objects whose sizes
are in the resonance region or smaller. Recently, iterative
MM techniques using conjugate gradient (CG) algorithms
were developed for two-dimensional problems [1], [2] and
expanded to three-dimensional problems [3].

The existence of a certain equivalence between the direct
and iterative MM has recently been recognized [3]-[5].
However, the iterative MM has the distinct advantage of
being capable of dealing with larger dielectric or biological
bodies. For example, on a CDC Cyber 855, the direct MM
is limited to an object of 80 cells, or 240 unknowns, each
of which can be no greater than, say, half a wavelength (in
medium) in linear dimensions. On the other hand, the
iterative MM can handle up to 3666 cells, or 11000 un-
knowns, on this computer.

Manuscript received March 31, 1989; revised June 12, 1989.

The authors are with the Georgia Research Institute, Georgia Institute
of Technology, Atlanta, GA 30332.

IEEE Log number 8930811.

In computing large-body problems by an iterative MM,
an overriding concern is the huge time and cost of compu-
tation. Even when the cost is of no consideration, the
operator is likely to be in a state of justifiable apprehen-
sion that the computer run lasting days and weeks may at
any time be aborted prematurely by operational or system
problems.

For large-body problems, the rapidity of convergence is
of paramount importance. The question whether an intelli-
gent choice of the initial guess in an iterative MM helps
numerical convergence must be addressed, since opinions
vary [2], [6]-[8].

In this paper, we present a “restart” technique which
allows the operator, or user, of the computer program to
monitor and evaluate the numerical process with little
sacrifice of computing cost and time. This restart feature
enables the operator to minimize the computing cost and
to avoid the “crashes” or “disasters” inherent in an ex-
tended computer run. We also address the issue of initial
guess with specific clarifications.

II. THE VOLUME INTEGRAL EQUATION APPROACH

Consider a three-dimensional, arbitrarily shaped dielec-
tric or biological body illuminated by an incident wave E',
which may or may not be a plane wave, as shown in Fig,
1(a). The problem can be formulated by replacing the
material body occupying the volume V' by an equivalent
volume current J as shown in Fig 1(b):

fVJ(r’) -G, (r,r)dv'+ D(r)J(r)=—Er) forrev
(1)

where
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Fig. 1. (a) Dielectric body illuminated by E'. (b) Replacing the dielec-

tric body with a volume current J.

Here ¢ is the permittivity of the medium, e, is the relative
permittivity, and e=e¢¢€, r and #' denote the position
vectors at the field and source points respectively. ki=
wyp, and the hat “™” denotes a unit vector. f denotes a
principal-value integration with an infinitesimal sphere
centered at r = ¢’ extracted.

Equation (1) can be written in the following form:

j J(r)-K(r,r)dv'=—E(r) forreV (6)
v
or, in general,
/x(r’)-L((r, rdv=y(r) forreV. (7)
v

Solution of the integral equation begins by discretizing
the volume V into L cubic volume cells ¥, V,, -, V,,
generally of different cell sizes. This is carried out by
expanding J as

Jr)=Y X J'Bi(r) (®)

I=1k=1
where
Bf(r) =i, Bf(r) =0, P(r) 9
P(r)=1, rev,
=0, elsewhere. (10)

Here 4, are unit vectors, being %, p, and Z for k=1, 2,
and 3 respectively in rectangular coordinates.
In a direct MM, weighting functions are chosen as

Wk(ry=28(r—r,)i,. (11)

By performing a symmetric product with W on (1) and
with J discretized by (8), for m=1,---, L and k=1, 2, 3,
one obtains 3L linear equations, or a 3L X (3L + l) matrix
equation, which can be solved for the unknown J/.

II1. ITERATIVE CONJUGATE GRADIENT ALGORITHM
WITH RESTART FEATURE

A three-dimensional iterative conjugate gradient (CG)
algorithm for solving (6) or (7) with the unknown equiva-
lent volume current J discretized according to (8) has been
successfully developed by the present authors [3]. This
algorithm was applied to large dielectric and biological
bodies including a 423-cell human body. The computation
begins with a given initial guess x”(r) and terminates
when either a preset accuracy criterion or the maximum
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number of iterations is reached. The error criterion is the

commonly adopted “normalized integrated square error,”
defined as

ERR(N )
ERRN = (12) -
f lx )‘ av’
where ERR™) is the “integrated square error,” defined as

2
ERR™) = [ | p(r)~ f M) -K(r, ¥)dv (13)
v v

For the continuous integral equation (7), ERR™) is zero if
and only if x)(r), the solution after N iterations, satis-
fies (7) at every point r in V. However, since it is the
discretized integral equation that is being solved, ERR™)
would be zero if x™)(r) satisfied (7) in a least-squares
sense.

To run an iterative algorithm, one presets either ERRY)
for the desired accuracy or a maximum number of itera-
tion N,,., or both, so that the computational process will
terminate automatically. An agonizing dilemma for the
operator in running large-body problems is to choose
ERR™) and N, based on a projected trade-off between
desired accuracy and computational cost. Since the course
of the actual iterative process is difficult to predict, a
computer run often terminates prematurely or continues
for many more unnecessary iterations. Thus it is desirable
to have a pause in the computer run after a certain number
of iterations and allow the operator to make an evaluation
and adjustment for the computational process.

The idea of pause and restart, or a similar procedure, for
an iterative algorithm had been explored by Sultan and
Mittra [7] and Davey and Montgomery [8]. In their meth-
ods, n iterations were first carried out, leading to a result-
ing x™(r). Then a fresh new start with x(r) as the
initial guess is made. (The restart of Sultan and Mittra is
based on the same principle, but is slightly different in
details). Their basic rationale is that a good initial guess
should lead to the “correct” result in fewer iterations than
a poor initial guess.

We have observed that, as far as the rate of convergence
is concerned, the knowledge and assignment of the g™
vector and coefficient 4 are much more important than
the selection of a good initial guess. We have developed a
new CG algorithm with a restart feature as shown in Fig.
2. The iterative process begins with an initial guess x©
chosen by the operator. However, the iterative process will
pause and dump g™, 4™, and x® into a tape file after a
preset N, or ERR"™ is reached. The operator then
examines the data to decide what new N, and ERR™
should be chosen for the next restart run. At the beginning
of the restart, the computer reads from a tape file g,
AM™ and x); consequently the restart is in effect a
perfect continuation of the process from the nth iteration
of the regular CG algorithm in |3]. Thus the restart CG
algorithm takes advantage not only of a better initial
guess, but also of the desired direction and magnitude of
the correction learned in a prior CG run.
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Integral Equation y(r)=fx(r’)'5(r,r')du‘
n=0

x(r)=x“(r)

FO(n) =y (n- [ xO)- K(r.rdy’

Ini1tial Estimate

Integrated Square Error ERR‘°’=[\F(°)(r)}ZdU

‘ S(n)(r)=fF(n)(rz),Et(rf,r)dU'

If n=1 read 1IN A and g®(r)

o a o

(n)

. A n-
g (r)=s""(r)+ g™ ()

A(n—l)
(= @™ Krrdy
B(">=f|f‘"’(r)|2du
™= A/ g™

N =N g ()
F<n)(l')=F("_l)(l‘)—'r](")'(n)(l‘)

e

Integrated Square Error ERR™ = f [F™ eyl du
v

Fig. 2. A 3-D conjugate gradient algorithm with restart feature.

IV. THE RESTART FEATURE AND THE EFFECTS OF
INITIAL GUESS

The present CG algorithm with a restart feature allows
the operator to pause and adjust an iterative run to fine-
tune for the desired accuracy within his budget for compu-
tational time and cost. It will also reduce the chance of
being aborted prematurely, as frequently happens in runs
lasting days or weeks. The price for this feature is mainly
an additional central memory allocated for (6L +1) com-
plex numbers (3L each for x©@ and g© and 1 for 4©),
where L is the number of cells in (8). This results in a
reduction by about 12 percent in the size of the biological
object (or the number of unknowns) that can be solved on
a computer. There is also a slight increase in execution
time for reading the input data for x©@, g©, and 4@ at
the beginning of the run and a similar amount of time to
store these three variables.

Although the restart CG algorithm was developed pri-
marily for large-body problems, it is easier to first demon-
strate the method and its advantages on smaller and sim-
pler objects. Fig. 3 shows the front, side, and bottom views
of a dielectric block discretized into 24 cubic cells. The
relative permittivity €, of the block is 71.7— j6.53. A plane
wave at 2450 MHz with z polarization propagates in the
direction of the x axis.

Fig. 4 shows the total electric field at the center of cell
no. 22, which is at x=0, y=0482 cm, and z=0. Four
sets of computational results are displayed in this figure.
The bottom straight line is the result of a direct MM
point-matching solution. Three iterative computations were
made, all of which converge to the direct MM result within
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Fig. 3. A dielectric block discretized into 24 cubic cells.
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Fig. 4. Computed fields in dielectric block showing successful pause
and restart in an iterative computation.

six significant figures, indicating an equivalence between
the present iterative MM algorithm and a direct MM with
point matching.

Among the three iterative runs, one is a continuous
procedure that terminates after the preset 75 iterations, the
second one pauses after the fifth iteration and then re-
sumes, and the third one pauses after the tenth iteration
and then resumes. As can be seen, the continuity of the
iterative process is not affected by the pauses. Also, con-
vergence is achieved after the 20th iteration. The pauses
allow the operator to evaluate and control the progress and
terminate the computation in a measured and controlled
manner.

A global view of the convergence phenomenon is shown
in Fig. 5, in which the simple line is for a straight iterative
computation, and the line with crosses is for a restart run
with x©@, g©® and A© read from x@¥, g@ and 4@
from a paused prior run. As can be seen, ERRN in the
restart run is 20 iterations ahead of that of a straight run,
indicating that the advantage of having a better x©@, g©@,
and A© in restart is maintained until ERRN drops to
below 10~ 1%, where numerical round-off errors introduced
in earlier input and output at pauses begin to take effect.
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Fig. 5. Comparison of the rate of convergence between straight and
restart iterations. .
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Fig. 6. Comparison showing poor rate of convergence in a restart that
reads in initial guess only.

As a comparison between the costs of these two runs, we
noted that it took 248.7 s on a CDC Cyber 855 for the
straight 75 iterations, while it took 252.4 s for the restart
procedure including 20+55, or 75, total iterations. The
difference is truly minimal. When the restart is carried out
with the informed initial guess x@® only, without g@®
and A®9, there is little advantage in the rate of conver-
gence exhibited by this better initial guess. This is illus-
trated in Fig. 6, which can be compared with Fig. 5 for the
effects of restart with and without inputting g®® and
AP, (In both restarts x®? is read in as x© from input
files.)

As an additional comparison, Fig. 7 shows a comparison
for the block problem of Fig. 3 between two different
initial guesses in a straight iterative run without pause. The
initial guess of E/Je,, or 0.118 in magpitude, is much
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Fig. 7. Rate of convergence little affected by initial guesses.
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Fig. 8. A dielectric cube discretized into 27 cubic cells.

closer to the correct answer (0.0553 in cell no. 22) than the
initial guess of E’, 1.0 in magnitude. However, this signifi-
cant advantage in initial guess vanishes steadily and was
totally lost after the 18th iteration and regained after the
29th iteration. This again demonstrates that the initial
guess x©@ plays a truly minor role in the rate of conver-
gence in CG compared with g@© and 4©.

Thus in searching for a solution by iterative means in a
three-dimensional problem, it is much more important to
know the direction in which to go than to be near the
correct location (result), even though a good initial guess
per se is a definite initial advantage.

Let us examine another case in Fig. 8, a cubic dielectric
body discretized into 27 cubic cells. Fig. 9 shows the total
electric field at the center of the cube in Fig. 8 computed
by a direct MM and three iterative procedures, two of
which pause at » =10 and »n = 20 respectively and restart,
and one without pause. Fig. 10 shows a comparison of the
rates of convergence for the cube case between a straight
iterative CG computation and a restart computation with
x©@, g and A©® read from x@%, g9, and 4 from a
previous run. Figs. 9 and 10 for the cube case exhibit
characteristics similar to those seen in Figs. 4 and 5 for the
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Fig. 9. Computed fields in dielectric cube showing successful pause and
restart in an iterative computation.
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Fig. 10. Comparison of the rate of convergence between straight and
restart iterations.

block case, and support the conclusions drawn earlier on
the role of the initial guess.

The restart CG algorithm was applied to the case of the
large 423-cell (1269-unknown) human body described in
[3]. The runs were paused and restarted after every 25
iterations. The choice of 25 iterations between pauses was
made after our first 50-iteration run was aborted by the
system operator after a few days on the Cyber. The nor-
malized integrated square error ERRN is observed to
decrease monotonically with the total number of iterations
N. However, instead of the staircase feature seen in Figs. 5,
6, and 10 for smaller objects, the decrease of ERRN is
more gradual in this case. This may be due to round-off
errors that are more prominent in large-body computa-
tions.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 12, DECEMBER 1989

1.00 T T T T T
! 0 points of restart for cell No. 9
075 b e points of restart for cell No. 64
]
Z
[m]
)
L
h[_ 0.50 E
L
Cell No. 64
s
0.25
N
Cell No 9
X 0 1 1 1 1 1
00 0 50 100 150 200 250 300
NUMBER OF ITERATIONS
Fig. 11. Convergence of field in cells 9 and 63 for the 423-cell human

body.

Fig. 11 shows the convergence of electric field intensity
in cells 9 and 63 as the total number of iterations N
increases. The dots and circles mark all the points of pause
and restart, which occur after every 25 iterations. The tiny
jitter of fields in cell no. 9 is probably related to the
resonance phenomena in the head region, where cell no. 9
is located. Let us compare Fig. 11 with the same case in
[3], in which 75 straight iterations were run according to a
preset maximum number of iterations (chosen to be 75).
This choice of 75 iterations was a trade-off between the
desired accuracy, computational cost, and possible opera-
tor or system drop that may happen to extremely long runs
lasting for weeks. In the present runs leading to Fig. 11, we
paused and restarted as needed, to be sure of obtaining the
desired data in an optimum number of iterations in a
controlled and organized manner.

V. CONCLUSIONS

A restart conjugate gradient algorithm for a three-
dimensional arbitrarily shaped dielectric body has been
successfully developed. The restart method breaks a long
iterative run into short runs so that no premature aborting
will take place and that the operator can control the
iterative process in a measured, and thus cost-effective,
manner. In developing this restart algorithm, the ambigu-
ity regarding the effect of initial guess is clarified. We
established that the g and A functions, rather than the
initial guess, are crucial to the rate of convergence.
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