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Computation of Electromagnetic Fields in
Large Biological Bodies by an Iterative

Moment Method with a
Restart Technique

JOHNSON J. H. WANG, SENIOR MEMBER, IEEE, AND JOHN R. DUBBERLEY

,4Ms-act —Tfse computation of EM fields in a large, three-dimensional

arbitrarily shaped dielectric or biological body is made practical by a

conjugate gradient algorithm with a restart technique. This algorithm

aflows the operator to run the program for large bodies in a measured and

controlled manner. It is clarified that in achieving convergence, a good

initial guess plays osdy a very minor role while the g(H) and A(n) functions

are crucial to the convergence in the conjngate gradient algorithm and

must be included in the restart.

I. INTRODUCTION

T HE INTERACTION of microwaves with a biological

body can have beneficial effects, such as the hyper-

thermia treatment of a cancerous tumor, and hazardous

effects, leading to ailments such as cataracts. In both

situations it is essential to know the field intensity inside

the biological body under consideration. This is especially

important at frequencies in the resonance region, where

the field intensity can be rapidly varying and difficult to

predict, appearing sometimes as dangerous “hot spots.”

Computation of electromagnetic (Em fields in an arbi-

trarily shaped dielectric or biological body has been car-

ried out by both direct and iterative methods of moments

(MM). In a direct MM, an operation involving a matrix

poses a heavy demand on the computer central memory.

As a result, the direct MM is limited to objects whose sizes

are in the resonance region or smaller. Recently, iterative

MM techniques using conjugate gradient (CG) algorithms

were developed for two-dimensional problems [1], [2] and

expanded to three-dimensional problems [3].

The existence of a certain equivalence between the direct

and iterative MM has recently been recognized [3]–[5].

However, the iterative MM has the distinct advantage of

being capable of dealing with larger dielectric or biological

bodies. For example, on a CDC Cyber 855, the direct MM

is limited to an object of 80 cells, or 240 unknowns, each

of which can be no greater than, say, half a wavelength (in

medium) in linear dimensions. On the other hand, the

iterative MM can handle up to 3666 cells, or 11000 un-

knowns, on this computer.
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In computing large-body problems by an iterative MM,

an overriding concern is the huge time and cost of compu-

tation. Even when the cost is of no consideration, the

operator is likely to be in a state of justifiable apprehen-

sion that the computer run lasting days and weeks may at

any time be aborted prematurely by operational or system

problems.

For large-body problems, the rapidity of convergence is

of paramount importance. The question whether an intelli-

gent choice of the initial guess in an iterative MM helps

numerical convergence must be addressed, since opinions

vary [2], [6]–[8]. -

In this paper, we present a “restart” technique which

allows the operator, or user, of the computer program to

monitor and evaluate the numerical process with little

sacrifice of computing cost and time. This restart feature

enables the operator to minimize the computing cost and

to avoid the “crashes” or “disasters” inherent in an ex-

tended computer run. We also address the issue of initial

guess with specific clarifications.

II. THE VOLUME INTEGRAL EQUATION APPROACH

Consider a three-dimensional, arbitrarily shaped dielec-

tric or biological body illuminated by an incident wave E’,

which may or may not be a plane wave, as shown in Fig.

l(a). The problem can be formulated by replacing the

material body occupying the volume V by an equivalent

volume current J as shown in Fig l(b):

/J(~’).Ge(~2~’) ~u’+~(~) J(r) = -~’(r)
v
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number of iterations is reached. The error criterion is the

commonly adopted “normalized integrated square error,”

E E defined as

o
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(a) (b) where ERR (‘) is the “integrated square error,” defined as

Fig. 1. (a) Dielectric body illuminated by E’. (b) Replacing the dielec-
tric body with a volume current J.

ERR(N)=! ~(r) -~x(N)(~’)E(r,r’)du’ ‘dv. (13)
v v

Here c is the permittivity of the medium, C, is the relative

permittivity, and c = C,Co. r and r’ denote the position

vectors at the field ~nd source points respectively. k:=

U’cop ~ and the hat “ “ denotes a unit vector. f denotes a

principal-value integration with an infinitesimal sphere

centered at r = r’ extracted.

Equation (1) can be written in the following form:

J“v)”m’w= -E’(r) for r= ~ (6)
v

or, in general,

Solution of the integral equation begins by discretizing

the volume V into L cubic volume cells P’l, Vz, o“ “, V~,

generally of different cell sizes. This is carried out by

expanding J as

J(r) = ~ ~ .l~B/’(r) (8)
/=1 k=l

where

B!(r) = dkll}(r) = tlkP1(r) (9)

P,(r) =1, rEVl

= o, elsewhere. (lo)

Here ilk are unit vectors, being i, j, and 2 for k =1, 2,

and 3 respectively in rectangular coordinates.

In a direct MM, weighting functions are chosen as

W;(r) =i3(r-rm)i2k. (11)

By performing a symmetric product with ,W~ on (1) and

with J discretized by (8), for m =1,. . . . L and k =1, 2, 3,

one obtains 3L linear equations, or a 3L X (3L + 1) matrix

equation, which can be solved for the unknown Jlk.

III. ITERATIVE CONJUGATE GRADIENT ALGORITHM

WITH RESTART FEATURE

A three-dimensional iterative conjugate gradient (CG)

algorithm for solving (6) or (7) with the unknown equiva-

lent volume current J discretized according to (8) has been

successfully developed by the present authors [3]. This

algorithm was applied to large dielectric and biological

bodies including a 423-cell human body. The computation

begins with a given initial guess x(o)(r) and terminates

when either a preset accuracy criterion or the maximum

For the continuous integral equation (7), ERR(N) is zero if

and only if x (~)( r), the solution after N iterations, satis-

fies (7) at every point r in V. However, since it is the

discretized integral equation that is being solved, ERR(N)

would be zero if x(N)(r) satisfied (7) in a least-squares

sense.

To run an iterative algorithm, one presets either ERR(N)

for the desired accuracy or a maximum number of itera-

tion N~=, or both, so that the computational process will

terminate automatically. An agonizing dilemma for the

operator in running large-body problems is to choose

ERR(N) and N~w based on a projected trade-off between

desired accuracy and computation nal cost. Since the course

of the actual iterative process is difficult to predict, a

computer run often terminates prematurely or continues

for many more unnecessary iterations. Thus it is desirable

to have a pause in the computer run after a certain number

of iterations and allow the operator to make an evaluation

and adjustment for the computational process.

The idea of pause and restart, cm-a similar procedure, for

an iterative algorithm had been explored by Sultan and

Mittra [7] and IDavey and Montgomery [8]. In their meth-

ods, n iterations were first carried out, leading to a result-

ing x(n)(r). Tlnen a fresh new start with x(n)(r) as the

initial guess is lmade. (The restart of Sultan and Mittra is

based on the same principle, but is slightly different in

details). Their basic rationale is that a good initial guess

should lead to the “correct” result in fewer iterations than

a poor initial guess.

We have observed that, as far as the rate of convergence

is concerned, the knowledge ancl assignment of the g(“)

vector and coefficient A (“~ are much more important than

the selection of a good initial guess. We have developed a

new CG algorithm with a restart feature as shown in Fig.

2. The iterative process begins with an initial guess x(o)

chosen by the operator. However, the iterative process will

pause and dump g(”), A(”), and x(”) into a tape file after a

preset N~= or ERR(*) is reached. The operator then

examines the data to decide what new N_ and ERR(”)

should be chosen for the next restart run. At the beginning

of the restart, the computer reads from a tape file g(’),
A(”), and x(”); consequently the restart is in effect a

perfect continuation of the process from the n th iteration

of the regular C!G algorithm in 13]. Thus the restart CG

algorithm takes advantage not only of a better initial

guess, but also of the desired direction and magnitude of

the correction learned in a prior CG run.



1920 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. 37, NO. 12, DECEMBER1989

Integral Equation y(r)=
/
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Fig. 2. A3-Dconjugate gradient algorithm tithrestwt feature.

IV. THE MSTARTFE ATUREAN DTHEEFFECTSOF

INITIAL GUESS

The present CG algorithm with a restart feature allows

the operator to pause and adjust an iterative run to fine-

tune for the desired accuracy within his budget for compu-

tational time and cost. It will also reduce the chance of

being aborted prematurely, as frequently happens in runs

lasting days or weeks. The price for this feature is mainly

an additional central memory allocated for (6L +1) com-

plex numbers (3L. each for x(o) and g(o) and 1 for A(o)),

where L is the number of cells in (8). This results in a

reduction by about 12 percent in the size of the biological

object (or the number of unknowns) that can be solved on

a computer. There is also a slight increase in execution

time for reading the input data for x ‘0), g(o), and A(o) at

the beginning of the run and a similar amount of time to

store these three variables.

Although the restart CG algorithm was developed pri-

marily for large-body problems, it is easier to first demon-

strate the method and its advantages on smaller and sim-

pler objects. Fig. 3 shows the front, side, and bottom views

of a dielectric block discretized into 24 cubic cells. The

relative permittivity c, of the block is 71.7 – j6.53. A plane

wave at 2450 MHz with z polarization propagates in the

direction of the x axis.

Fig. 4 shows the total electric field at the center of cell

no. 22, which is at x = O, y = 0.482 cm, and z = O. Four

sets of computational results are displayed in this figure.

The bottom straight line is the result of a direct MM

point-matching solution. Three iterative computations were

made, all of which converge to the direct MM result within

og,dmEi!Ei-
1-1.928 cm -1

I
1.446 cm

I

m

Y

f=2,450 MHz

EL=j~-jh

c,=71.7-j6.53

Fig. 3. A dielectric block discretized into 24 cubic cells.
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Fig. 4. Computed fields in dielectric block showing successful pause
and restart in an iterative computation.

six significant figures, indicating an equivalence between

the present iterative MM algorithm and a direct MM with

point matching.

Among the three iterative runs, one is a continuous

procedure that terminates after the preset 75 iterations, the

second one pauses after the fifth iteration and then re-

sumes, and the third one pauses after the tenth iteration

and then resumes. As can be seen, the continuity of the

iterative process is not affected by the pauses. Also, con-

vergence is achieved after the 20th iteration. The pauses

allow the operator to evaluate and control the progress and

terminate the computation in a measured and controlled

manner.

A global view of the convergence phenomenon is shown

in Fig. 5, in which the simple line is for a straight iterative

computation, and the line with crosses is for a restart run

with x(0), g(0), and A(o) read from x(20), g (20), and A (20)

from a paused prior run. As can be seen, ERRN in the

restart run is 20 iterations ahead of that of a straight run,

indicating that the advantage of having a better x ‘0), g ‘0),

and A(o) in restart is maintained until ERRN drops to

below 10-15, where numerical round-off errors introduced

in earlier input and output at pauses begin to take effect.
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Fig. 6. Comparison showing poor rate of convergence in a restart that
reads in initiaf guess only.

As a comparison between the costs of these two runs, we

noted that it took 248.7 s on a CDC Cyber 855 for the

straight 75 iterations, while it took 252.4 s for the restart

procedure including 20+ 55, or 75, total iterations, The

difference is truly minimal. When the restart is carried out

with the informed initial guess x 120Jonly, without g (20)

and At20), there is little advantage in the rate of conver-

gence exhibited by this better initial guess. This is illus-

trated in Fig. 6, which can be compared with Fig. 5 for the

effects of restart with and without inputting g(20) and
A(20). (In both restarts x(20) is read in as x(o) from input

files.)

As an additional comparison, Fig. 7 shows a comparison

for the block problem of Fig. 3 between two different

initial guesses in a straight iterative run without pause. The

initial guess of E ‘/~, or 0.118 in magnitude, is much
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Fig. 8. A dielectric cube discretized into 27 cubic cells.

closer to the correct answer (0.0553 in cell no. 22) than the

initial guess of E‘, 1.0 in magnitude. However, this signifi-

cant advantage in initial guess vanishes steadily and was

totally lost after the 18th iteration and regained after the

29th iteration. This again demonstrates that the initial

guess x(o) plays a truly minor role in the rate of conver-

gence in CG compared with g(o) i~d A(o).

Thus in searching for a solution by iterative means in a

three-dimensional problem, it is much more important to

know the direction in which to go than to be near the

correct location (result), even though a good initial guess

per se is a definite initial advantage.

Let us examine another case in Fig. 8, a cubic dielectric

body discretized into 27 cubic cellk. Fig. 9 shows the total

electric field at the center of the cube in Fig. 8 computed

by a direet MM and three iterative procedures, two of

which pause at n =10 and n = 20 respectively and restart,

and one without pause. Fig. 10 shows a comparison of the
rates of convergence for the cube case between a straight

iterative CG computation and a restart computation with
x(o) g(o),and A(0)readfrom X(15), g(lj), ad A(15) from a

pre~ous run. Figs. 9 and 10 for the cube case exhibit

characteristics similar to those seen in Figs. 4 and 5 for the
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10. Comparison of the rate of convergence between straight and
restart iterations.

block case, and support the conclusions drawn earlier on

the role of the initial guess.

The restart CG algorithm was applied to the case of the
large 423-cell (1269-unknown) human body described in

[3]. The runs were paused and restarted after every 25

iterations. The choice of 25 iterations between pauses was

made after our first 50-iteration run was aborted by the

system operator after a few days on the Cyber. The nor-

malized integrated square error ERRN is observed to

decrease monotonically with the total number of iterations

N. However, instead of the staircase feature seen in Figs. 5,

6, and 10 for smaller objects, the decrease of ERRN is

more gradual in this case. This may be due to round-off

errors that are more prominent in large-body computa-

tions.
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Fig. 11. Convergence of field in cells 9 and 63 for the 423-cell human

body.

Fig. 11 shows the convergence of electric field intensity

in cells 9 and 63 as the total number of iterations N

increases. The dots and circles mark all the points of pause

and restart, which occur after every 25 iterations. The tiny

jitter of fields in cell no. 9 is probably related to the

resonance phenomena in the head region, where cell no. 9

is located. Let us compare Fig. 11 with the same case in

[3], in which 75 straight iterations were run according to a

preset maximum number of iterations (chosen to be 75).

This choice of 75 iterations was a trade-off between the

desired accuracy, computational cost, and possible opera-

tor or system drop that may happen to extremely long runs

lasting for weeks. In the present runs leading to Fig. 11, we

paused and restarted as needed, to be sure of obtaining the

desired data in an optimum number of iterations in a

controlled and organized manner.

V. CONCLUSIONS

A restart conjugate gradient algorithm for a three-

dimensional arbitrarily shaped dielectric body has been

successfully developed. The restart method breaks a long

iterative run into short runs so that no premature aborting

will take place and that the operator can control the

iterative process in a measured, and thus cost-effective,

manner. In developing this restart algorithm, the ambigu-

ity regarding the ef feet of initial guess is clarified. We

established that the g and A functions, rather than the

initial guess, are crucial to the rate of convergence.
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